NetScience Interview Mail 2005/01/13 Vol.304 |
NetScience Interview Mail HOMEPAGE http://www.moriyama.com/netscience/ |
NetScience Interview Mail : Free Science Mailzine | |
---|---|
科学者インタビューを無料で配信中。今すぐご登録を! |
【その他提供中の情報】 | 新刊書籍情報 | | イベント情報 | | おすすめURL | etc... |
◆Person of This Week: |
【深井朋樹(ふかい・ともき)@玉川大学 工学部 知能情報システム学科 教授】
著書:『脳を知る・創る・守る 4』(共著、クバプロ)
『ニューラルネットの統計力学とカオス』 ニューラルネットワークシステムとカオス, pp 189-244.(椎野正寿,深井朋樹. 合原 一幸編. 東京電機大学出版会, 1993)
『脳の情報表現』深井朋樹、加藤英之、北野勝則. Computer Today 2002年7月号、pp. 9-15(サイエンス社).
『脳内時計の神経機構』(岡本洋、深井朋樹. 別冊・数理科学2002年10月, pp. 51-59(サイエンス社).
ホームページ:http://brain.inf.eng.tamagawa.ac.jp/indexJ.html
○脳はどのように時間や記憶を情報表現しているのでしょうか。どんなものであるにせよ神経の発火パターンとして表現されているはずです。ではそれはどんなものなのでしょうか。どんな神経回路で実現されているのでしょうか。このような問題を「神経情報表現」と呼びます。この問題に対してモデルの立場から研究を行っている深井先生のお話をお届けします。(編集部)
○先生は99年に、「脳内クロックの計算モデル」という演題で<脳の世紀>シンポジウムで講演されてますね。『脳を知る・創る・守る 4』(クバプロ)にも収録されていますが、まずその話から伺ってもよろしいですか。 ■ええ。脳が時間をどのように処理しているのかに興味があったんですよ。計算論の立場でいうと、まずコンピュータには同期を取るためのマスタークロックがあります。それが情報処理の流れを制御したり統合しているわけです。そのクロックと同じような働きをするものが脳にもあると思われます。 ○ええ。 ■それで、ニューロンが働いている、つまりスパイクを発火する時間尺度はミリ秒単位なんです。ところが我々の日常的な経験や行動に関係している最も短い時間尺度はせいぜい秒単位です。問題は、このミリ秒単位から、秒単位の時間で行われる記憶や認知がどのようにして可能になるのかということです。 ○どうやってるんでしょう。 ■そこが興味があるところです。脳の時計に関しては様々な仮設的モデルが提案されていますが、まだはっきりしたことはわかっていません。しかし大きく分ければ、二つの説があると言っていいでしょう。一つ目がクロックカウンタモデル。もう一つが固有時間間隔モデルです。 ○それぞれどういうものなんでしょうか。 ■クロックカウンタモデルというのは、時計のように一周したら1、二周したら2、というふうに何かリズムがあればいいという考え方です。この立場の人が良く取り上げる脳の活動として、40ヘルツのガンマ振動というのがあります。それが40回まわれば1秒、というふうになると。そういうモデルです。 ○ふむ。 ■固有時間間隔モデルは1秒用、2秒用といろんな長さに合わせた砂時計がたくさんある、というモデル。あるいは、図りたい時間間隔に合わせて砂時計を合わせて調節している可能性もあります。つまり、記憶する時間の長さだけ、自発的な神経応答を接続させて、持続させると。いくつかの実験ではこちらを支持するような結果が出てます。 ○どんなものですか? ■たとえば、適当な方法で被験者に時間間隔を提示してそれを記憶させ、数秒の遅延期間の後、時間間隔を再生させるんです。この場合、遅延期間中に数を数えることが出来ないようにします。そうすると、時間間隔を厳密には再生できなくても、ある範囲の正確さで再生できるんです。たとえば3秒という時間を記憶しなくちゃいけないと。そうするとぴったり3秒じゃなくてもだいたい3秒に近い時間を再現できると。それだけならそりゃそうだろうと思うかもしれませんが、その誤差の出方に統計的な規則があるんです。 ○誤差の標準偏差に法則があったと。 ■そうです。かなり個人差がありますが、例えば1〜9秒までの、1,3,5,7、9秒という時間間隔を使って実験をしたところ、近さの度合いが、どの時間間隔でもほぼ14〜15%になるといった具合です。つまり誤差の大きさが目標時間に比例して増減する。これを「ウェーバーの法則」と呼んでます。さらに詳しく言うと、再生された時間の分布にはスケール不変性もあった。こういった実験結果を、どんなモデルであれば説明できるか、というのが私の興味だったんです。 ○それで、先生方のモデルは?
■変な仮定をしない限り、クロックカウンタモデルではウェーバーの法則を実現できない。カウンタが回るたびにノイズがのると考えると、ゆらぎは目標時間ではなくその平方根に比例すると考えられるからです。だから少なくとも時間間隔の記憶・再生にはこのモデルは使われてない。 ○ふむ。
■それで、発火活動を自律的に持続させることで時間を記憶できるようなモデルを構築してみたんです。 ○非発火状態と発火状態の二つではなくて、発火する前の状態に二つの状態があるということですね。 ■そうです。実際に神経細胞モデルを作って、興奮性の信号を伝えるグルタミン酸作動性のシナプス電流や、抑制性の信号を伝達するGABA作動性のシナプス電流のコンダクタンスを調整してバランスをとると、膜電位が実際に二つの安定状態を取れることも分かります。それを使って、回路を組んで、ウェーバー則を満たすような持続発火を作れば、それが時間間隔符号化の神経回路モデルになるのではないかと考えたわけです。 ○なるほど。 ■それで興奮性のシナプス結合で双安定性を持つニューロンを繋いで、ダイナミクスにノイズを入れてやると。そして、時間再生が初まる時間に、全てのニューロンが活性化状態、つまり全部「アップ状態」に励起されるとします。ノイズが入っているのでこの状態は完全に安定ではなく、時間が経つにつれ、ひとつ、またひとつとダウン状態に遷移していく。アップ状態に励起されているニューロンの数が減っていくと、だんだんニューロン間の興奮性相互作用も弱くなっていくため、ますますアップ状態に留まるのが難しくなっていきます。そしてある限度まで来ると、雪崩を打ったように残りの全てのニューロンがダウン状態になる。 ○相転移ですか。 ■そうです。この相転移的変化が起こるまでの時間が、この回路が符号化した時間間隔だと。実際にシミュレーションを行うと、ある時点まではほとんどのニューロンがアップ状態なんですけど、突然すべてのニューロンがダウン状態に移行した。狙ったとおりに。時間間隔の分布のゆらぎと平均値(=目標時間)の比も一定になり、ウェーバー則が成立していることが証明できます。 ○ふーん。
■ややこしいことをやってるように見えるかもしれませんが、こういう仕組みで、ミリ秒の活動から1000倍も10000倍も長い時間スケールを自然に実現しているんじゃないかと考えています。少なくとも、ある点では、クロックカウンタモデルよりも有効だと思います。
○私は、先生の時間情報の脳内表現に関する研究に興味を持ってお伺いしたんですが、他にもいろいろやってらっしゃるんですね。 ■そうなんですよ、時間の研究もやったはやったけど、それだけに興味があるわけではありません。
○はい。 ■そうですね。 ○先生がお話ししやすい順番でいいんですけど。 ■結局僕の興味ってね、その……、まあ、脳というと神経の回路があって、そこで情報処理がされているわけなんですけれどもね、そのニューロンやその回路が情報処理をする基本的な仕組みというか、それを知りたいということなんですね。まあいくら生物の話だと言っても、脳はこれだけうまく働いているわけだから、そういうものがあるだろうと信じてるわけです。 ○はい。
■だから例えば相手にするのは、運動でも記憶でも実は何でもいいんだけれども、そのときに神経回路がどのように働いて、機能を実現しているのかを知りたい。 ○ええ。モデルから機能を調べると。
■まあ、これが分かりやすい言い方か分からないけど、「ダイナミクス」という言葉があります。物理的なシステムが時間発展とともに変化していく様を表わす言葉と考えてもらえばいいでしょう。 ○はい。 ■そのために、神経細胞のモデルを実際に作ってみたり、それを回路につなげてみる。そうすると、いろんな現象が起きるんだけれども、そういったものを、理論的な方法とか、あるいは計算機シミュレーションなどで調べます。その知見に照らしていろんな実験のデータを解釈して現象の背景で働いている神経メカニズムを推測したり、あるいはモデルによってさらに進んだ実験を提案したり、情報処理の新しい可能性みたいなものをこう引っ張り出していくと、そんな感じですね。 ○次号へ続く…。
|
科学技術ソフトウェア データベース
|
◆このメールニュースは、 ◆<科学技術ソフトウェアデータベース・ネットサイエンス> ◆[http://www.netscience.ne.jp/] の提供で運営されています。 |
発行人:株式会社サイネックス ネットサイエンス事業部【科学技術ソフトウェアデータベース・ネットサイエンス】 編集人:森山和道【フリーライター】 |
interview@netscience.ne.jp moriyama@moriyama.com |
ホームページ:http://www.moriyama.com/netscience/ *本誌に関するご意見・お問い合わせはmoriyama@moriyama.comまでお寄せ下さい。 *メールマガジンへの広告掲載に関するお問い合わせはinfo@netscience.ne.jpまで御願いします。 |
◆このメールニュースは、 ◆<科学技術ソフトウェアデータベース・ネットサイエンス> ◆[http://www.netscience.ne.jp/] の提供で運営されています。 |